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Inviscid evolution of stretched vortex arrays 
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The nonlinear evolution of an array of pairs of inviscid counter-rotating vortices, 
subjected to an applied stretching strain field, has been studied numerically using 
the contour-dynamics method. The array configuration is effectively the Corcos-Lin 
model of streamwise vortices in the braid region of a nominally two-dimensional 
mixing layer. For each individual vortex the simulations elucidate the strong 
interaction between the vortex self-induction, the vorticity amplification of the 
stretching strain, and the local in-plane strain applied by all other members of the 
array. When the initial vorticity distribution is modelled by a non-uniform piece- 
wise-constant vorticity field defined over a nested set of non-intersecting contours, 
the dynsmical evolution reveals fine structure consisting of strong vortex roll-up 
accompanied by trailing, filament-like spiral vortex sheets, and the presence of 
tertiary instabilities. It is shown by a particular example that these features are 
largely absent in an equivalent computation in which array members are modelled 
by the commonly used uniform-vortex approximation. 

1. Introduction 
There is now substantial experimental evidence which indicates the existence of 

a system of longitudinal streamwise vortices located within the thin shear-layer 
regions (the braids) connecting the spanwise vortex cores of the nominally two- 
dimensional mixing layer. Using the visual product of a chemical reaction as a 
flow-visualization technique, Breidenthal (1981 ) observed organized streamwise 
structures in a mixing layer with average spanwise wavelength scaled on the initial 
wavelength of the two-dimensional primary shear-layer instability. Bernal (1981 ) 
obtained pictures through planes normal to the stream in the braid region that show 
what appear to be cross-sections of spiral streamwise vortices. Hot-wire measurements 
in the mixing layer (Jimenez 1983) together with digital image processing of 
flow-visualization photographs (Jimenez, Cogollas & Bernal 1985) support the 
spanwise scaling found by Breidenthal and further indicate that the mean circulation 
of individual streamwise structures increases to a nearly constant value of the same 
order as the local circulation in the primary, rolled-up spanwise vortices. 

Roshko (1980) suggested that a set of spanwise and streamwise vortices would 
naturally play an important dynamical role in the transition of the mixing layer to 
three-dimensionality, and that for Reynolds numbers tending to infinity, further 
groups of higher-order structures would be required to accomplish energy transfer 
to the finer scales of motion. A convincing deterministic paradigm of this process has 
been described by Corcos & Sherman (1984), Corcos & Lin (1984) and Lin & Corcos 
(1984), motivated by the idea that at least the initial phase of transition in the mixing 
layer is not wholly chaotic but occurs in a more or less ordered hierarchy of 
characteristic vortex structures which interact via a system of identifiable, nonlinear 
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instabilities. The second level of the Corcos-Lin-Sherman (CLS) model consists of an 
array of highly flattened, nearly streamwise counter-rotating vortices embedded 
within the vorticity-depleted primary braid system, and subject to  the local 
stretching-strain field produced by the spanwise rolled-up vortex cores (Lin & Corcos 
1984). Although the process whereby streamwise vorticity of zero spanwise average 
value might be produced from the original spanwise shear layer is not yet fully 
understood, these secondary vortices of the CLS model are natural prototypes for 
the streamwise structures seen in experiments. They therefore seem worthy of further 
study. 

I n  the present paper we apply the inviscid contour-dynamics (CD) method 
(Zabusky, Hughes & Roberts 1979) to  simulate the Corcos-Lin model of secondary 
vortex evolution. In  $ 2  we describe briefly the CLS hierarchy of deterministic 
motions in the mixing layer. The CD model is formulated in $ 3 .  Each vortex is 
modelled by a piecewise-constant vorticity distribution defined over four layers of 
uniform-vorticity fluid, introduced to model vorticity gradients that are shown to 
be significant for the flow development. The numerical method is described briefly 
in $ 4  and in Appendix B, and the initial conditions and flow parameters are given 
in $ 5 .  The simulations which are discussed in $ 6 reveal the formation of intense cores 
a t  the centre of each rotating vortex, together with spiral vortex sheets and the 
appearance of local instabilities on the strained outer vortex layer. 

2. The Corcos-Lin model of secondary vortices in a mixing layer 
The Corcos-Lin-Sherman model of thc mixing layer is depicted in figure 1. The 

version shown is a standard idealized approximation of a laboratory-generated shear 
layer. The latter develops in the streamwise direction and a t  a fixed streamwise 
station its fluid properties are nearly periodic in time. In contrast the model layer 
is periodic in the streamwise direction but evolves in time. In  figure 1 the primary 
or first-order motion is the nominally two-dimensional instability of the parallel 
shear flow. If S, is the initial layer vorticity thickness, and U the velocity shear, the 
primary (Kelvin-Helmholtz) instability has maximum growth rate on a streamwise 
lengthscale L z 7.5 8, leading to vortex roll-up into compact primary spanwise cores 
of circulation rz UL,  and on a timescale = O ( L / U ) .  Subsequent subharmonic 
pairing instabilities follow giving the well-known streamwise linear growth in the 
mean layer thickness. 

The second-order motion is the growth of three-dimensional perturbations on the 
time-dependent base flow of the primary vortices. There are several plausible 
mechanisms that might generate strong streamwise vorticity from such instabilities. 
It is clear however that the classical linearized Orr-Sommerfeld instability of the 
parallel shear layer is not appropriate since the predicted timescale for the growth 
of three-dimensional motions is larger than that required for the appearance of 
strongly nonlinear features such as roll-up and pairing, which ultimately emerge from 
a purely two-dimensional instability. This led Pierrehumbert & Widnall (1982) to 
study the inviscid modulational three-dimensional instability of Stuart vortices, used 
as a model of the rolled-up state of the primary vortex structures. They found new 
three-dimensional wavelike growing modes - the 'translative ' instability - centred 
within the concentrated vortex cores, over a broad range of spanwise wavelengths 
which included the streamwise wavelength of the Stuart vortices. Corcos & Lin (1984) 
argue however that the translative instability is both slower than, and is inhibited 
by, the pairing instability of the primary vortices, and that consequently the 
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FIQURE 1.  (a) Primary rolled-up vortices in a free shear layer and secondary vortices (not to scale 
spanwise) in the braid region. (b)  Corcos-Lin model of secondary vortices subject to locally uniform 
three-dimensional strain induced by the primary vortices. 

assumption of a steady albeit non-uniform base flow implicit in the use of Stuart 
vortices is not appropriate to  the shear-layer evolution. They studied the origin of 
the three-dimensional motion a t  a shear-layer Reynolds number Re, = US,/v = 50 ( v  
is the kinematic viscosity) as an initial-value problem obtained through linearization 
of the three-dimensional velocity about the spanwise average of the total velocity 
field. All perturbation properties were assumed to  have periodic spanwise variation. 
Non-spanwise vorticity was found to grow from the initial three-dimensional 
disturbances in both the primary vortex cores and in the braid regions. In  the former 
i t  tended to be folded several times and to rotate with the cores, while in the latter 
i t  remained sensibly tangent to the braid in the plane of the unperturbed shear flow. 
Significantly Corcos & Lin found that three-dimensional motions, even a t  large 
amplitudes, had negligible influence on the two-dimensional base flow. They conclude 
that the origin of the experimentally observed streamwise vorticity lies essentially 
within the braids, resulting from a three-dimensional OrrSommerfeld-type insta- 
bility of the initial shear layer modified substantially by the nonlinear time history 
of the two-dimensional base flow, at least up to  the first pairing event. 

Whatever the origins of the three-dimensional motions, it is apparent that  their 
effect is the creation of an array of streamwise counter-rotating secondary vortices 
(figure l b ) ,  whose axes are locally tangent to the braids. The calculations discussed 
previously do not give information on either their average spanwise wavelength h 
or on the individual vortex circulation SZ but experimental evidence suggests h x L 
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(Brcidenthal 1981) and SZ = p r w h e r e p  = O(1) (Jimenez 1983). According to the CLS 
model the secondary vortices lie within the axial stretching strain with magnitude 
y = 7tU/(2L) (this value is obtained from a point-vortex model) induced in the braid 
region by the primary vortices (Corcos & Lin 1984). The strain compresses the 
vortices normal to the local tangent plane containing the braids so that, within a 
linearized approximation, their vorticity thickness 8, approaches the Burgers 
vortex-sheet thickness 8, = (27cu/y)$ (Burgers 1948) in a time of order 
T, z y-1[8f/8i- 11: (Lin & Corcos 1984; hereinafter referred to as LC). Cross-sections 
of the vortex cores then tend towards a flattened shape elongated in the spanwise 
direction. In our notation T,  and the asymptotic aspect ratio a,  = h/(26,)  are 

The vorticity distribution in the asymptotic state is not in steady-state equilibrium, 
and will therefore undergo distortion by the array self-interaction. LC uses the 
asymptotic stretched state as initial conditions for numcrieal finite-difference solutions 
of the Navier-Stokes equations at Re, = Q / u  = O(500) (Re, z p(L/S,)  Re,). These 
show collapse of the secondary vortices, perhaps via a strain-induced mechanism as 
described by Neu (1984a, b ) ,  into nearly axially symmetric Burgers vortices of the 
type studied by Robinson & Saffman (1984). However for very large Re, this strong 
vortex self-interaction could be expected to influence the vortex evolution before the 
asymptotic state is attained, and indeed may play a crucial role in the secondary- 
vortex formation process itself. A self-consistent treatment of this question would 
seem to require a long-time, fully three-dimensional mixing-layer simulation (e.g. 
Couet and Leonard 1980) a t  realistic Re,, over a streamwise domain containing 
perhaps the first two pairing events. 

We shall suppose presently that in the limit of infinite Re,, Re,(%+ oo), numerical 
simulations with zero fluid viscosity are of relevance to the dynamics of Corcos-Lin 
secondary vortices over the short stretching timescale y-', prior to the onset of the 
viscous-diffusion strctrhing-strain vorticity balance which determines the Burgers 
vortex-sheet like asymptotic stretched state. In  other words we shall assume that 
when Re, + 00 ,  the early secondary vortex evolution will be dictated largely by the 
strong nonlinear interaction between the array self induction and the stretching 
strain. Further, in the present simple two-dimensional simulation, we shall model the 
switching on of the array self-induction at  various stages of the formation process 
only by covering a range of different initial vortex geometries (i.e. 8,) and strengths 
(i.e. p). The result is rudimentary models of sccondary-vortex evolution different in 
detail but with common features. In particular we find rapid deformation of initially 
eccentric Corcos-Lin vortices into spiral structures. For very large but finite Re, we 
might expect that the mode of viscous decay for these structures would be 
qualitatively similar to that found by Lundgren (1982) from solutions of the 
Navier-Stokes equations for the evolution of axially strained spiral vortices (see also 
Moore & Saffman 1973; Kaden 1931). In utilizing these solutions to  model the fine 
structure of inertial-range turbulence, Lundgren finds decay on two distinct 
timescales; a short one on which individual spiral turns merge together forming an 
essentially inviscid, smoothed rotational vortex core, and a long timescale on which 
this core itself relaxes towards the strain viscous-diffusion controlled, nearly axially 
symmetric Burgers vortex. Significantly the Lundgren model contains a natural 
lengthscale for the Kolmogorov length, namely the radial wavelength of the 
oscillating part of the vorticity field within a band of rapidly decaying spiral vortex 
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turns. We note that double timescale decay is typical of the viscous fluid dynamics 
of spiral vortices and serves to illustrate the highly non-uniform character of the 
large-Re, limit for this type of vorticity distribution. 

3. The initial-value problem 
3.1. The vorticity field 

The model describes the interaction of an array of non-uniform vortices (the 
secondary vortices) with an applied stretching-strain field. In Cartesian (5, y,z)- 
coordinates the full unsteady velocity field u has components 

u, = V;G(X,Y,t), ( 3 . 1 ~ )  

uy = y/(x,y,t)-y(t)y, (3. lb)  

u, = y(t)z. (3 .1~)  

In  (3.1) the terms containing y( t )  are the uniform plane-strain field in the (y,z)-plane 
induced externally by the primary vortices and V,, V, are the components of the 
self-induced velocity field of the secondary vortices. Referring to figure l ( b ) ,  z is 
directed locally along the braid of the nominally two-dimensional primary-vortex 
motion, x lies in the spanwise direction and y is normal to (x,z). The only non-zero 
component of the vorticitv field is 

av av 
ax ay 

w,(x, y,t) = 2-2. 

The velocity and vorticity fields of (3.1) and (3.2) are such that vortex lines are of 
infinite extent and are always parallel to the z-axis. We assume that the fluid is 
incompressible, inviscid, and of constant density. On the (x, ?/)-plane projection of 
particle paths of (3.1), x[x(O),t],y[y(O),t], i t  may be readily shown that for r(t) > 0 
the uniform plane-strain field amplifies w, as (Lundgren 1982; Jacobs & Pullin 1985) 

(3.3) ~,{x[...l,Y[...l, t> = w,{x(O), Y(O),O) exp [&(t)l, 
t 

where &(t) = I y(t’)dt’. (3.4) 
0 

The secondary vortices are modelled here as an infinite x-wise periodic array 
consisting of one row of identical vortices with centroids at y = 0, 
x = (p +$)A ,  p = - 00, . . . , 00 and circulation - 52, and of a second row of identical 
vortices with centroids at  y = 0, x = (p-a)A,  p = - 0 0 ,  ..., 00 and circulation SZ. 
Figure 2 shows two members of the array corresponding to p = 0, which we denote 
by vortex 1 (right-hand side) and vortex 2 (left-hand side) respectively. Geometrically 
vortex 2 is the mirror image of vortex 1 in x = 0, and i t  has circulation equal in 
magnitude but opposite in sign to that of vortex 1. At time t each vortex appears 
in (z,y)-cross-section as a nested set of M = 4 non-intersecting contours which 
delineate discontinuities in the piecewise-constant w, field. We denote the contours 
of vortex 1 by the counterclockwise running curves C,(t), counting j = 1, . . . , M from 
the outermost contour inwards. The domain of the (2, y)-plane bounded by C,(t) and 
C,+l(t) is denoted by R,(t) and has area A,(t). R,(t) is interior to CM(t) and Ro(t), 
0 < x < $A is exterior to Cl(t). The initial vorticity distribution for vortex 1 is 

w,(O) = 0 in Ro(0), 

w,(O) = const in R,(O) ( j  = 1, ..., M ) .  
w,(x, y, 0) = (3.5) 

13-2 
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t ’  

FIGURE 2. Pair of counter-rotating vortices in (x, y)-plane. The contours describing vortex 1 are 
Cj,j = 1 ,  4, where j = 1 for the outermost contour. w,(O) is the initial uniform vorticity in R, 
bounded by C, and Cj+l. The flow is irrotational outside of the vortices. 

Hence from (3.4), for t > 0 

W,(G y, t )  = q ( t )  in Rj(t), (3.6a) 

(3.6b) w,(t) = q ( 0 )  exp [ W I  (j = 1, -.-, M ) .  

Also Aj(t) = AjW exp[-&(t)l, (3.7) 

Oj = Aj(t) = W j ( 0 )  A(O), (3.8) 

where Qj is the magnitude of the circulation contained in Rj. The a,, j = 1, . . . , M are 
invariants of the vortex motion and O = &aj is the magnitude of the total 
circulation of vortex 1. 

3.2. Contour-dynamics formulation 

The assumed vorticity structure allows use of the contour-dynamics (CD) method 
(Zabusky et al. 1979; Pullin 1981; Overman & Zabusky 1982) for the numerical 
simulation of the vortex-array evolution. In  the present application, owing to  the 
symmetries and periodicity of the system, it is only necessary to  consider the motion 
of vortex 1 in figure 2. Let &(e, t )  = xi(e, t)+iyj(e, t) (j = I ,  ..., M and i2 = - l ) ,  
denote the coordinates of a particle on Cj( t ) ,  where e is a contour parameter. Adapting 
the CD formulation of Jacobs & Pullin (1985) for uniform stretching vortices to  the 
present configuration gives an initial-value problem for &(e, t )  (an overbar denotes 
the complex-conjugate) as 

-cot [; -(cj+c,,,) - 1  ]5} 7 de‘ (j = 1, ..., M ) ,  (3.9) 

where Am,,, = m,,,(0)-m,,,-l(O), cj = cj(e, t )  and & 3 cm(e’ ,  t ) ,  m = I ,  ..., M .  The lcft- 
hand side of (3.9) expresses u,-iuy defined in (3.1) for a matcrial point on Cj, in terms 
of the instantaneous shapes of all the contours C,,,, m = 1, . . ., M .  On the right-hand 
side of (3.9) the first term is the contribution of the stretching-strain field to the 
complex velocity and the integral terms are the self induction of vortex 1 and vortex 
2 plus the relevant velocity contributions from all other members of the array. Note 
that when e‘be on C,, the first of thc two intcgrands in the integral in (3.9) takc thc 
value 2ayj/ae. The essential steps leading to (3.9) are outlined in Appendix A. 
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3.3. Energy of the vortex array 
We define a measure of the energy of the array per member (i.e. energy of vortex 
1 )  in the (x, y)-plane as 

(3.10) 

(3.11) 

where $ is a stream function which satisfies V2$ = -w,(t)  in R,, j = 0, ..., M .  
Defining $ = 0 on 5 = &:A and for y + f co , using Green’s first and second theorem 
and the planar Stokes theorem, (3.10) may be written, after some algebra as 

M 

+hexp [ 2 ~ ( t ) 1  rn-1 c ~ w r n [ u m ( o ) + u m - 1 ( 0 ) 1 $  Cm Y3dz, (3.12) 

where s is the arc length and n is the inward facing normal on C,. The integral 
containing $ may be further reduced to a form convenient for numerical integration, 
through integration by parts. For ~ ( t )  = 0, E(t) is an invariant of the vortex 
evolution, but for y > 0 ,  E may be expected to increase due to energy transfer from 
the strain field (first-order motion) to kinetic energy of the secondary vortices in the 
(2, y)-plane. 

4. Numerical solution 
For the present simulations, all physical quantities are made dimensionless against 

the length and timescales A/2x and A2/(4x252) respectively. This is equivalent to 
putting A = 2x, 52 = 1 in previous equations, and regarding all other quantities as 
dimensionless. Unless otherwise specified this will be the convention followed 
subsequently. The numerical method is generally similar to the CD code described 
by Jacobs & Pullin (1986) with improvements and refinements required for the 
larger-scale computations described here. Briefly the C,(t) are defined as a set of N,(t) 
nodes numbered k = 1, ..., N,(t). A suitable approximation to the integrals in (3.9) 
then leads to a set of 2N(t) ordinary differential equations (ODES), 

M 

1-1 
W )  = Z q t )  

for the node coordinates {[(x,)~, (Y,)~], k = 1,  ..., N1(t)} ,  j = 1, ..., M = 4. There are 
three essential parts of the calculation; (i) evaluation of the integrals, (ii) timewise 
integration of the ODES, (iii) numerical control of nodc distribution by use of a node 
insertion/deletion scheme, introduced so as to automatically provide adequate 
resolution in portions of the C, where fine structure is generated locally. 

For the calculation of the integrals, following a transformation of the form 
[* = exp [-is], each Cj(t) was divided into elements defined on node subsets 
[([;)k-1, ([,*),, ({,*),+,I, k = 2, 4, ..., N,(t)  by fitting a quadratic to $ ( e )  in 
k- 1 C e < k+ 1.  The element contributions to the integral in (3.9) were then 
evaluated using a four-point Gaussian integration formula. Most of the simulations 
discussed here were also performed using Simpson’s rule on each element with 
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0 -  

[ t = O  

t = 8  

- - 

I I 1 I I I , , , , , , , , , ~ , , , , ~ ,  

integration variable e = k. Although these two schemes produced identical C,(t) 
shapes to the accuracy of the large-scale plots discussed subsequently, the Gaussian 
method gave better smoothness properties for the C j ( t )  on the node-spacing scale, 
during the latter part of the computation. 

The ODES obtained from (3.9) were integrated using a fourth-order Runge- 
Kutta-Fehlberg method. The algorithm contained automatic control of the timestep 
Atl( t ) ,  set locally such tha t  the singlc-step truncation error did not exceed a 
user-specified tolerance dl), with d') = 

The node insertion procedure is a refinement of that  used by Jacobs & Pullin 
(1985). Full details and some discussion are given in Appendix B. 

The accuracy of the calculations was checked by : 
(a) monitoring variations of the fractional error in the circulation invariants. 

here. 

where A,(t)  is the calculated area of B,(t) and f is the constant dimensionless strain 
rate ; 

(b)  observing changes in the energy invariant (3.13) for calculations with f = 0;  
(c) the use of different spatial and timewise integration procedures in test cases for 

the purposes of checking the scnsitivity of the results to variations in the details of 
the numerical technique. 
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FIGURE 3. Evolution of vortex array, a, = 12.7, f = 0. Dimensionless times t as shown. 

5. Initial conditions and parameters 
The initial conditions refer to  the geometrical shape of the C, and the values of 

the oj(0),j = 1 ,  ..., 4. Each C, was initially elliptically shaped, as illustrated for 
example in the first frame of figure 3. The dimensions of the major and minor ellipse 
axes ( T , ) ~  and (r& respectively, and the values of w,(O) were chosen to model a nearly 
sinusoidal distribution of vorticity along y = 0, and a normal vorticity distribution 
along x = +in. We define the initial vorticity thickness 8, for each vortex as 

4 

2 c w,(O)L(T2),- (T2)j+I l  

8, = j-1 , (5.1) 
"ma, 

where ( T ~ ) ~  = 0 and wma, = w,(O). The vortex aspect ratio is defined as u2 = n/6,. 
Since the formation mechanism that initially produces the secondary vortices is not 
fully understood, their strength and typical geometry a t  the time when nonlinear 
self-interaction begins to influence their evolution remains uncertain. Hence we 
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a2 = 12.7 a, = 25.8 a, = 51.7 

cj (rhj crAj W j ( 0 )  (r2)j W j ( 0 )  (rAj W j ( 0 )  

C, 1.53 0.208 -0.63 0.102 -1.29 0.0512 -2.57 
C, 0.918 0.125 - 1.48 0.061 2 -3.02 0.0306 - 6.037 
C, 0.535 0.072 8 -2.00 0.035 7 -4.08 0.01785 -8.159 
C, 0.247 0.033 6 -2.30 0.0165 -4.69 0.00824 -9.382 

TABLE 1 .  Initial geometry and vorticity distribution for vortex 1 of figure 2, for three initial vortex 
geometries. Values of S,,, are 0.248, 0.122 and 0.0608 

considered three initial configurations corresponding to u2 = 12.7,25.8 and 51.7, and 
several values o f f .  The respective ellipse and vorticity parameters are summarized 
in table 1.  The initial number of nodes distributed on C, were N,(O) = 60 (a, = 12.7), 
N,(O) = 60 (a, = 25.8) and N,(O) = 100 (a2 = 51.7). Proportionally smaller 
N 3 ( 0 ) , j  = 2,3,4 were used on the inner ellipses. The only further parameter is 
f = yA2/(4n252), which is related to  the LC parameter fi = Q / ( y h 2 )  as f = (4n2a)-l. 
Using y x R U / ( ~ L ) ,  h x L and r x UL, for secondary vortices in a mixing layer 
gives f x (SnP)-' where p = Q/r. The hot-wire measurements of Jimenez (1983) (see 
also Jimenez et al. 1985) indicate /3 = O( 1) .  Using /? = 0.25 and 0.5 gives y x 0.16 and 
0.08 respectively. Here we take f = 0, 0.1, 0.2 and 0.4. This last value is large but 
is of interest as an extreme case. 

6.  Results and discussion 
Sequences of evolving contour portraits which depict the timewise deformation of 

a typical vortex pair for the range of a2 and f treated are shown in figures 3 4  and 
7-20. We regard the simulations as quantitatively reliable for 0 < t < t,,, where, for 
most cases displayed, t,,, is a value somewhat larger than those indicated in the final 
frame of each sequence. Individual calculations were generally terminated for 
t 2 t,,, when either (i) max,[6(Qj)] 2 d2), where d2) = 0(10-2) and/or (ii) 
maxj[Nj(t)] 2 Nmax, where the value N,,, = 1000 was determined by available 
computing resource limitations. The onset of (i) was usually accompanied by the 
appearance of substantial spatial oscillations in the shape of the Cj  on the order of 
the local node spacing, which was taken to  indicate insufficient local resolution. 
Max3[N3(t)] invariably occurred on C, ,  with a typical value of 600 and 
C,N,(t)  - O(1500). 

Figures 3 and 10 show the array evolution with f = 0, (i.e. no out-of-plane 
stretching) for a2 = 12.7 and a2 = 25.8 respectively. These cases are of interest since 
first they provide solutions against which the influence of f > 0 can be evaluated, 
and secondly, variations in E(t )  given by (3.12) may be used as a global check on 
accuracy. At t = 4 in the sequence of figure 3, the differential rotation of the C, 
induced by the initial vorticity concentration towards the centre of each vortex is 
clearly evident. Later, for t 2 12, this results in the formation of a central vortex 
core. Simultaneously, the vortex tails (those regions of the initial vortex closest to 
neighbouring vortices) are drawn out into thin, curved vortex layers whose thickness 
is small compared to the local radius of curvature. The overall result by t = 16 is the 
generation of a rolled-up double spiral vortex not unlike those found in vortex 
coalescence computations (Zabusky et al. 1979; Overman & Zabusky 1982; Jacobs 
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FIGURE 4. Evolution of vortex array, a, = 12.7, y = 0.1. Dot-dashed lines show the (2, y)-plane 
projection of the stagnation stream surface for a point-vortex approximation to the secondary 
array. Dimensionless times t as shown. 

t Pullin 1985). Note that the inner contours C, and C,, which contain roughly 25 yo 
of rR a t  t = 16 in figure 3, quickly collapse into the vortex core. In contrast the outer 
contours C, and C, undergo continuous and large deformation both within the vortex 
core and as part of the spiral filament, resulting in large vorticity gradients on the 
outer edge of the core. 

The sequence of figure 4 with a2 = 12.7, 7 = 0.1 shows the expected exponential 
reduction in the A,(t) as vortex lines are stretched longitudinally by the z-component 
of the strain. With 7 = 0.2 and 0.4 in figures 7 and 8 respectively, the increased spin 
induced by the vorticity amplification is strong enough to substantially reduce the 
timescale of the initial vortex core roll-ups, when compared with the 7 = 0 evolution. 
By analogy with the roll-up of the primary shear layer, we assume that the 
dimensional roll-up timescale for 7 = 0 is order h/a, where CT,, is the velocity jump 
across the flattened vortex at its centroid at t = 0. Using a vortex-sheet model with 
u(z) = no sin (27cs/h), where no = xrR/h, in conjunction with a similarity transforma- 
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FIGURE 5. Magnified view of vortex contours, a2 = 12.7, f = 0.1, t = 10.0. Arrows indicate the 
(z, y)-velocity field of a point-vortex array in the (y, z)-plane stretching-strain field with 3 = 0.1. 
Dot-dashed lines represent the (2, y)-projection of the stagnation stream surface for this velocity 
field. . 

tion (Lundgren 1982) which relates stretched and equivalent unstretched two- 
dimensional vortex flows, we estimate the dimensionless roll-up timescale for ? > 0 
as z 7-l In (1 +4nf), in broad agreement with the trends shown in figures 3 4  and 
7-8. I n  figure 8 at t = 5, the beginning of a local shear instability may be seen on 
each flattened spiral vortex arm. This instability occurs a t  the tip of C, presumably 
because of the contour shape perturbations caused locally by the vorticity gradient 
along the vortex sheet. Thus the actual site of the local instability is determined by 
the artificial and non-smooth character of the piecewise-constant vorticity field. 
However a continuous initial vorticity field will generally contain local non- 
uniformities qualitatively similar to those modelled here by vorticity discontinuities 
and hence the appearance of local or tertiary instabilities dynamically equivalent to 
those produced in our simulations may be expected. 

The trend of the simulations with a2 = 25.8 (? = 0, 0.1, 0.2, 0.4) in figures 10-16 
and with a2 = 51.7 (? = 0.1, 0.2) in figures 17-20 shows some resemblance to those 
for a, = 12.7 but with notable differences in detail. The more-flattened initial vortex 
shape leads to enhancement of shear instability. In  some cases, for example as in 
figures 14 and 17 these local instabilities are dominant to the extent that  each vortex 
evolution is perhaps best viewed as a series of local roll-ups of the type that were 
shown by LC ($4) t o  evolve on infinite, stretched shear layers subject to periodic 
streamwise perturbations. These (tertiary) vortex cores are connected by their own 
system of thin braids, each undergoing biaxial stretching caused by the combined 
strain fields of the primary and secondary vortices. By analogy with the (uncertain) 
formation mechanism for the secondary vortices, we might speculate that this new 
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braiding system may provide sites for the production of still higher-order structure 
orthogonal to and acting as an energy sink to the secondary vortices. 

When a2+ a, the secondary-vortex array may be viewed as an initially flat vortex 
sheet with a sinusoidal strength distribution. This limit has been studied analytically 
by Neu (19843) who demonstrated strain-induced collapse to  a point vortex of 
isolated segments of vortex sheets with initially elliptical strength distributions. 
There is now evidence (e.g. Meiron, Baker & Orszag 1982) that indicates that  an 
unstretched vortex sheet of uniform strength develops a singularity in a finite time 
t, following an initial shape or strength perturbation. The sheet evolution for t 2 t, 
remains an  open question, but may locally take the form of a double-arm similarity 
spiral of the type studied by Pullin BE Phillips (1981). The stretched or unstretched 
vortex sheet with sinusoidal strength variation has received little attention numeric- 
ally. Possible behaviour including singularity/vortex-spiral production modified 
by the Neu collapse mechanism may elucidate the large aspect-ratio limit for the 
dynamics of secondary vortices with initially smooth vorticity distributions. 

I n  figures 9,12,15-16,18 and 19 we show magnified views of the vortex core region 
at selected times, which illustrate the fine structure of the vorticity field. Shown inset 
in figures 9 and 12 are vorticity distributions obtained along cuts through the vortex 
centroid. Notice the reversal in sign of the vorticity gradient produced near the outer 
edge of the core by ‘roll-up ’ of C, interior to  the vortex. On a long timescale we would 
expect that  the accelerating differential rotation in the vortex core would wind these 
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FIGURE 7. Evolution of vortex array, a2 = 12.7, f = 0.2. Dimensionless times t as shown. 

gradient reversals into a spiral embedded within weaker ambient core vorticity, thus 
producing even finer scales of motion than those generated on the ' outer ' spiral. 

The details of figures 16 and 19 reveal corrugations of the C, on the scale of the 
local node spacing which are not visible in the corresponding larger-scale plots of 
figures 14 and 17 respectively. This is a purely numerical instability which signals 
the breakdown of the computation. It appears because the node insertion/deletion 
scheme is ultimately unable to provide, within the bound max[Nj(t)] 6 Nmax, the 
small-scale node spacing required for the resolution of the very finest scales of 
motion. For figure 16 we find d(52,) x 0.003, 6(52,) x 0.01, S(52,) x 0.04, d(52,) x 0.08 
(see (4.3)) a t  t = 3.8 while for figure 19 we find &(a,) x 0.005, 6(52,) x 0.01, 
S(52,) x 0.003, &(a,) x 0.1 a t  t = 3.8. For these extreme cases (i.e. large a,) these 
values indicate that the respective solutions are losing quantitative accuracy, and 
that they provide only a qualitatively faithful picture of the tendency towards the 
formation of a series of vortex cores through local instabilities. In  figure 19 we 
indicate the division of the vortex into core and braid segments a t  t = 3.8. The 
respective fractions of the total circulation in each segment are 52, x 0.1152, 
52, w 0.0752, QC x 0.03552, 52, x 0.12, 52, x 0.0352, 52, x 0.2752 and 
52 = 2(~2,+52,+52c+SZ,+nE)+a,. 
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A comparison of the h a 1  frame of each simulation suggests that the vortex tails 
appear to approach a nearly stationary state. This may be understood as follows: 
in the vicinity of the vortex tails the dimensional velocity field may be well 
approximated by a point-vortex model obtained by assuming that the circulation f SZ 
of each finite-area. vortex is concentrated at the vortex centroid. The (2, y)-plane 
velocity field for this point-vortex array coupled with the stretching strain is 

+iyy. (6.1) 

When y > 0, (6.1) exhibits stagnation points on the planes of mirror symmetry at  
x ,  = @A, y, = ( -  l)m YA/(2n), m = 0, 1 ,  2, . . ., where Y is a solution of 

(6.2) 

For f = 0.1,0.2 and 0.4, Y x 1.018,0.652 and 0.372 respectively. The dimensionless 
velocity field from (6.1) (Q = 1 ,  h = 2n) with f = 0.1 is shown in figure 5 superimposed 
on the contour shapes for a2 = 12.7, f = 0.1 at t = 10 from figure 4. Also shown in 
figure 5 and in the final frame of each of figures 4, 6-8, 11 ,  13, 14, 17 and 20 are 
segments of the (2 ,  y)-plane stagnation streamlines of (6.1) for the left-hand vortex 
(vortex 2). As the vortex tilts in the anticlockwise direction, i t  appears that the tips 

Y cash ( Y )  - (27tf)-l = 0. 
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PIIXJRE 9. Magnified view of vorticity contours, u2 = 12.7, 7 = 0.4, t = 5. Inset: vorticity 
distribution in vortex core. 

of the flattened vortex tails nearly stagnate near the planes of mirror symmetry. 
Simultaneously the vortex core contracts in the presence of a local strain field which 
is the sum of the (y, 2)-plane stretching strain, and the (2, y)-plane strain field induced 
near the vortex centroid by all other members of the array. These events combine 
to produce the conditions required to both generate and sustain the spiral structure. 
Within the model inviscid dynamics, the ultimate result indicated is a winding 
collapse of each vortex. The agreement with this model is less convincing for the 
u2 = 51.7 results of figures 17 and 20 first because the point-vortex approximation 
loses accuracy near the vortex tails owing to the extended vortex geometry, and 
secondly since the simulation is terminated before the vortex tails have fully rotated 
into the stagnation region. 

I n  figure 6 we show the vortex-array evolution calculated using a single-contour 
( M  = 1) uniform-vorticity model. The total circulation and initial shape of G,, and 
hence the mean vorticity is the same as the simulation of figure 4. By comparison 
we show also in figure 6 the evolution of an isolated uniform elliptical vortex subject 
to a (y, 2)-plane stretching-strain field with f = 0.1. The initial aspect ratio and 
strength are as for the left-hand member (vortex 2) of the pair shown a t  t = 0, so 
that differences in the subsequent shapes may be attributed to the influence of the 
array on vortex 2. By t = 10 both vortex 2 and the isolated vortex have tilted and 
have changed their shape to  some extent, but the array pair exhibit no fine structure 
remotely comparable to  that depicted in the t = 10 frame of figure 4. At t = 16, which 
is beyond the range of the present non-uniform vortex computation, the vortices of 
figure 6 have decreased in both area and in effective aspect ratio. This is an example 
of the Neu (1984u, b )  strain-induced collapse mechanism for isolated elliptical 
vortices, modified for vortex 2 by the (2, y)-plane strain of all other members of the 
array. LC gives an estimate of the collapse time for isolated vortices (LC, equation 
3.8) by assuming collapse following a local balance between the self-induction 
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FIGURE 10. Evolution of vortex array, u2 = 25.8, f = 0. Dimensionless times t as shown. 

velocity a t  the vortex tip and the y-component of the strain velocity. I n  our notation, 

(6.3) 
this is 

where 7-l is the ellipse aspect ratio and 8, may be identified with the angle of tilt 
at t = 10 in figure 6. With the parameters of figure 6, x 7.5 which is somewhat 
less than x 16 suggested by the results of figure 6. For the present non-uniform 
vortex evolution, the collapse mechanism appears t o  be only partly effective, since 
the nonlinear self-induction of the flattened vortices generates a rolled-up and 

x 6o(i + r)4 C O S ~  ee p, 
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FIGURE 1 1 .  Evolution of vortex array, a2 = 25.8, f = 0.1. Dimensionless times t as shown. 

dominant vortex core before substantial local focusing of vorticity by the y-component 
of strain can become operative. We note that this result appears to cast some doubt 
on the relevance of uniform-vortex models to the inviscid dynamics of non-uniform 
vortices, a t  least for those initial distributions that will produce a rapid distortion 
of the vorticity field. 

In figures 21 and 22 we have plotted the energy associated with vortex-array- 
induced fluid velocities in the (x, y)-plane as calculated from (3.12) with a = 12.7 
and 25.8 respectively. When p = 0, E(t )  is sensibly constant with errors 
(E(t , , , )-E(O))/E(O) x 0.005 in both cases. When 9 > 0, E(t )  increases because of 
energy transfer from the stretching-strain field to kinetic energy in the (x, y)-plane 
vortex motion. Further transfers to smaller scales given by the spiral-vortex turn 
spacing and by shear-layer instability scales may be expected but these transfers 
have not been resolved in quantitative detail here. In  a real viscous fluid this energy 
is eventually dissipated in both the vortex-sheet and rod structures generated by the 
nonlinear vortex evolution. 

A quantitative measure of individual-vortex deformation during its evolution is 
shown in figures 23-25, where we have plotted the perimeters of the nested vortex 
contours against t .  In these figures both C, and C, show a sudden reduction near the 
time of formation of the central vortex core. By contrast C ,  and C,  exhibit an 
explosive increase in length as they are advected into and undergo rapid distortion 
within the spiral vortex arms. 
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FIGURE 12. Magnified view of vortex contours, u2 = 25.8, 9 = 0.1, t = 6. Inset: vorticity 
distribution in vortex core. 

Lastly we discuss briefly the possibility of large-scale instability of the secondary- 
vortex array by pairing or other cooperative modes subsequent to the formation, for 
y not too large, of compact vortex cores. This was found to a limited extent by LC 
for the post-roll-up phase of the perturbed Burgers vortex sheet (that is, within an 
individual flattened secondary vortex), but they did not consider possible pairing 
instabilities of the alternating-vortex array. A crude estimate of the timescale for 
two-dimensional cooperative instability is of interest, and can be obtained using 
simple point-vortex approximation. Consider a doubly infinite array of point 
vortices, with members of strength -52 a t  y = 0, z = (m+a) A ,  m = - 00, ..., 00, and 
other members of strength SZ at y = 0, z = (n-a) A, n = - 00, ..., 00. Introducing 
perturbations to individual vortex coordinates proportional to exp [crt + i27cpq], 
0 < p < 1, where q = m or n and following an argument given in Lamb (1932, Article 
156), then a simple calculation shows that the growing mode of the perturbations has 
growth rate. 



396 D .  I .  Pullin and P .  A .  Jacobs 

--n 0 X -n 

FICIJRE 13. Evolution of vortex array, a2 = 25.8, f = 0.2. Dimensionless times t as shown. 

Hence stretching strain reduces but does not eliminate the instability. From (6.4), 
8 is a maximum for p = + corresponding to pairing; note that this may not be true 
for finite-area vortices (see Mciron, Saffman & Schatzman 1984). Using y = nU/(BL),  
52 = /3UL, p = +, then the timescale 7: = S-' for the pairing instability is 

q y  = 2[(1+/3*)4-1]-'. (6.5) 

Taking values of p = 0.25,0.5 and 1 .O in (6.4) gives T5 y z 65, 17 and 5 respectively. 
Hence, in the point-vortex approximation the timescale for the pairing instability 
is long compared to y-l, and this timescale may be thus expected to be long compared 
with the timescale required for the evolution of the fine structure of individual 
vortices seen in the present simulations. This result may be used to justify a 
posteriori the present imposed constraint, which by virtue of the mirror-image 
symmetry imposed on the vortex-pair geometry of figure 2, requires that the 
coordinates of the vortex centroids remain invariants of the evolution. We note that 
the rough estimate given above may be substantially altered by finite vortex area. 
Further there arc three-dimensional instabilities of the array that may have larger 
growth ratcs than the two-dimensional pairing mode discussed above, which we have 
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FIGURE 14. Evolution of vortex array, a2 = 25.8, f = 0.4. Dimensionless times t as shown. 

not considered here. These include the analogue for secondary vortices of the 
three-dimensional translative instability studied by Pierrehumbert & Widnall 
(1982), and the pinching instability, leading to vortex-ring-like structures, discussed 
by Jimenez (1983). 

7. Conclusions 
We have presented computations illustrating the nonlinear inviscid evolution of 

an array of Corcos-Lin secondary vortices in the presence of a longitudinal stretching- 
strain field. At values of the strain ? characteristic of the mixing layers, 0 < ? < 0.2, 
the vorticity field reveals fine details of the flow development which include: 

(i) the rapid formation of an intense rolled-up vortex core with companion 
double-arm vortex spirals ; 

(ii) incipient tertiary instabilities embedded within spiral filaments, and containing 
in some case their own smaller-scale vorticity spirals; 

(iii) the presence of weak sheet-like vorticity tails terminating the spirals, which 
are maintained by the local (2, y)-plane velocity field generated near each vortex tail 
by the combined velocity induction of all members of the secondary-vortex array 
coupled with the y-component of the strain velocity. 

There are many features of real mixing-layer flows that we have of necessity 
neglected in the present model. These include the timewise decay of the stretching 
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FIGURE 15. Magnified view of vortex contours, a,  = 25.8, f = 0.4, t = 3. 
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FIGIJRE 16. Magnified view of vortex contours, u2 = 25.8, 9 = 0.4. t = 3.8. 

strain caused by successive pairing events experienced by the primary vortices 
(Corcos & Sherman 1984), interaction of primary (spanwise) and secondary (stream- 
wise) vorticity, strong random variations to perfect spanwise periodicity of secondary 
vortices which are clearly indicated by experimental observations, and the possibility 
of fully three-dimensional instabilities of the vorticity distribution that may destroy 
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FIQURE 17. Evolution of vortex array, a2 = 51.7, = 0.1.Dimensionless times t as shown. 

the array coherence on a timescale comparable with that found for the evolution of 
the vortex fine structure. 

The present computations, which we assume to be relevant to  the effective 
infinite-Re, limit, and the moderate-Re, results of LC are complementary but contain 
some notable differences. The calculations depicted in figures 4, 7 and 8 of LC a t  
Re, = 508, 508 and 1950 respectively, and in the present notation, with a, = 8, 
p = 0.08, a, = 11.3, f = 0.16 and a, = 18, p = 0.11 respectively, are the results most 
nearly comparable to ours. The beginnings of spiral shear-layer formation can be seen 
in figure 4(c-d) and in figure 7, while the onset of local shear instability is evident 
in the highest-Re, case of figure 8. Neither of these trends becomes well developed 
although it  is clear that  the suggestion of local instabilities provides the motive for 
the LC study of nonlinear Burgers-vortex-layer evolution. I n  the LC simulations the 
focusing of vorticity by the strain field, and the consequent balance effected by 
enhanced viscous diffusion appear to  efficiently attenuate radial vorticity oscillations 
characteristic of spiral shear layers, with the result that  the spiral vortex tail remains, 
for example in figure 4 ( d ) ,  only as an appendage to the well-formed nearly axially 
symmetric asymptotic, Burgers vortex. By comparison the present results indicate 
that a t  effectively infinite Re, the nonlinear roll-up of, and the (2, y)-plane longitudinal 
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FICIJRE 19. Magnified view of vortex contours, a, = 51.7, f = 0.1, t = 3.8. Dashed lines indicate 
division of vortex into a system of cores and connecting braids. Section A extends to the end of 
the vortex tail. 



Inviscid evolution of stretched vortex arrays 

Y -  

0 -  

40 1 
- 

r =  0 

- 

1 1 1 1 1 1 1 1 1 1 1 , 1 , , , , , , , 1 ,  

t = l  

G/----i-L 
1 1 1 1 1 1 1 , , 1 1 , 1 , , 1 , , , , 1 ,  

;/x; 
\ 1 2  

I I I 1  I 1  1 1  I 1  I J ' 1 1 1 , I I I I I  

t = 2.5 
/------ 

- ---_- 
1 1 1 1 1 1 1 , , , 1 , , , , 1 , , , , I I  

--x 0 X n 

I I 

0 2  4 6 8 10 12 14 16 
t 

FIQURE 21. Energy of the vortex array per member, a2 = 12.7. Values o f f  as shown. 

strain induced on an  individual vortex by the rest of the array, can effectively 
combine to  form new spiral vortex layers containing several turns on a timescale 
comparable with both y-' and the vorticity focusing timescale. These differences 
seem to be clearly Reynolds-number dependent, and may be worthy of further study. 
At large but realistic Re,, the LC and the present results together suggest a 
mechanism whereby vortex sheets may be continually created by spiral production 
following roll-up associated with nonlinear secondary or higher-order instabilities, 
and destroyed by relaxation via the Lundgren (1982) mechanism towards the 
equilibrium Burgers vortex. Simultaneously any unrolled vortex layers, such as 
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FIQURE 22. Energy of the vortex array per member, a, = 25.7. Values of 3 as shown. 
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FIQURE 23. Variation of contour perimeter with time 1 ,  u2 = 12.7, 3 = 0. 

trailing vortex filaments might be expected to  be stretched towards the local 
Burgers-vortex-layer thickness S,, whereafter disintegration to smaller-scale vortex 
rods would follow. 

Although very highly idealized, the present simulations provide some evidence 
that the natural vortex dynamics of secondary vortices are capable of producing a 
spectrum of rod and sheet-like structures of the type observed in flow-visualization 
studies of mixing-layer streamwise vortices. 

This work was supported by the Australian Research Grants Scheme under Grant 
No. F8315031 I. 

Appendix A. Velocity field of the stretching vortex array 
Consider first an isolated uniform vortex in the (5, y)-plane whose vortex lines are 

all initially parallel to the z-axis and are of infinite extent. Let the counterclockwise 
curve C bound the vortex. Inside C the initial vorticity is w ( 0 )  and outside C the flow 
is irrotational. Now let the vortex be subject to a uniform plane-strain field in the 
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FIGURE 24. Variation of contour perimeter with time t ,  a2 = 25.7 f = 0.2. 
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FIGURE 25. Variation of perimeter of outermost contour with times, t ,  u2 = 12.7. 
Values off  as shown. 

(y, %)-plane such that the velocity field can be described by (3.1). Then at time t ,  the 
I\: and y components of velocity at a point (2, y) can be expressed in complex form 
as (e.g. see equation (10) of Jacobs & Pullin 1985). 

where p = 1 if (x, y) is within G and p = 0 otherwise. In (A 1) the first term on the 
right-hand side is the stretching-strain contribution to the velocity field and the 
second and third terms are a decomposition of the vortex-induced velocity into 



404 D .  I .  Pullin and P .  A .  Jacobs 

irrotational and rotational parts respectively. The integral term expresses the 
irrotational velocity field as a distribution of complex singularities of local density 
yaC/as on C' (s is arc length), chosen so as to just cancel the jump in the rotational 
velocity component as a field point 6 crosses C .  

Now consider an infinite array of vortices, each member of which is identical with 
the isolated vortex described above. Let the centroids of the vortices be (yc,xc+ph),  
p = - 0 0 ,  ..., co. Then summing the contributions of all members of the array to  
u, - iu, gives 

The integral on the right-hand side of (A 2) may be written as 

df'+p2iAy, (A 3) 

where the second integral on the left-hand side of (A 3)  has been evaluated using 
residues. Thus 

and we note that (A 4) is valid for (x, y)  inside, outside, or on C. Generalizing (A 4) 
by inspection to a vortex array whose individual members are defined by a nested 
contour geometry and vorticity distribution like that described in 33.1, we find 

where Aw, = w m ( 0 ) - ( ~ m - l ( O ) .  
Equation (3.9) follows by first applying (A 5) individually to each member of the 

typical vortex pair illustrated in figure 2. Secondly, the integrals on the contours of 
vortex 2 are expressed as integrals on the Cj using the mirror-image symmetry 
properties of the pair. Finally we let (x, y) be a point on Cj and identify u,-iu, in 
(A 5) with the complex velocity, expressed as acj/i3t, of a material point on Cj with 
instantaneous coordinate [ x ( t ) ,  y ( t ) ] .  

Appendix B. Node-insertion/deletion procedure 
The node-insertion/delction scheme was operated to maintain adequate contour 

resolution while maintaining the required computing resources at manageable levels. 
The scheme itself is computationally expensive and so was implemented a t  intervals 
At,(t)  where 

At2 = 0.2 exp ( -  Q ( t ) ) .  (B 1) 

The node-insertion procedure is a refinement of that used by Jacobs & Pullin 
(1985). Specifically a node was inserted between (&)k and ( [ j ) k + l  on Cj if  

l(Cj)k+, - (5j)kl ' @)> (B 2a)  

(B 2 b )  

(B 2 c )  

d3) = max[min(&,in, t ~ - l ,  8,,,, 4Sadj), 0.0211, 

dmin = max[Smin, 0.041, 
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Smin = minimum distance of approach of another contour, (B 2 4  

(B 2 e )  

(B 2 f )  

(B 2 9 )  

(or non-adjacent part of current contour) 

K = local contour curvature, 

S,,, = min[0.03 x (perimeter of C,), 0.151, 

Sad, = min"C,k (C,)k-lL I(l&+z - (C,)k+lll. 

The new node was placed at e = k+?j by linear interpolation on [(cj)k, (5 j )k+l ] .  Cubic 
interpolation was used for some trials and although it  has higher-order accuracy in 
regions which have a low curvature-to-arc-length ratio, i t  was much less robust than 
the linear interpolation in cusp-like segments of the C,(t) where this ratio was large. 

Node deletion operated by deleting node (C,)k, if I ( [ j ) k + l  - ([,)kt < d4) = 
max[O.Ol, +@)I. This simple node deletion was preferred to  higher-order interpolation 
as i t  reduced the occurrence of slender contour filaments containing negligible 
circulation and decreased the tendency for contours to fold back upon themselves. 
The incidence of this type of numerical event remains one of the major problems in 
the application of the CD technique. 

Inadequate description of fine-scale motions is the penalty for minimizing required 
computing resources. Limits upon the number of nodes inserted are indicated by the 
empirical constants in (B 2 b , c , f ) .  These constants were chosen so that no single 
criterion dominated the node distribution, but so that the coherence of the contours 
and the accuracy of the calculated flow invariants was maintained. Ultimately, the 
only satisfactory method of testing accuracy is to demonstrate convergence of the 
CD solution for specific applications, with respect to the constants appearing in 
(B 2u-g )  that determine the N j ( t ) .  Such convergence was obtained empirically by 
Jacobs 6 Pullin (1985) for the vortex-coalescence problem with M = 1. Unfortunately 
a similar demonstration for the present problem proved impractical owing to  the 
very large values of N,(t) generated quite early in most simulations. We note that 
general convergence and uniqueness proofs for the CD approximating scheme 
utilizing node insertion have yet to  be established. 
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